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EVATLUATION OF AN ENERGY METHOD USING FINITE DIFFERENCES
FOR DETERMINING THERMAL MIDPLANE STRESSES IN PLATES

By Harry G. Schaeffer and Walter L. Heard, Jr.
Langley Research Center

SUMMARY

A method of obtailning a set of finite-difference expressions for the ther-
mal stress function directly from the complementary strain-energy expression is
evaluated. The essential difference between this method and the more usual
partial-differential-equation approach is that, in the energy approach, only
conditions involving the variation of the stress function and its first normal
derivative at the boundary must be satisfied explicitly. These conditions are
generally termed the "geometric" boundary conditions. In approaching the prob-
lem from the partial-differential-equation viewpoint, rather than from the
energy viewpoint, it is necessary to satisfy explicitly additional conditions
involving the second and third derivatives which are generally termed "natural"
boundary conditions.

The finite-difference method is evaluated by applying it to a thermal
stress problem for which an approximate solution and experimental results are
available. The finite-difference results appear to converge rapidly as the num-
ber of grid stations 1s increased. A collection of coefficients for grid sta-
tions on or near the boundary is presented to aid in the rapid formulation of
specific problems.

INTRODUCTION

In many applications of current interest - for example, the structural skin
of vehicles designed for high-speed flight in the atmosphere -~ platelike con-
figurations are subjected to a thermal environmment. This environment, together
with restraints on the plate boundary, may induce stress in the midplane of the
plate.

The problem of determining the relationship between midplane stress dis-
tribution and temperature distribution has received considerable attention in
the past. In reference 1 a variational method is used to determine the approxi-
mate relationship between temperature distribution and midplane stress for thin,
flat, rectangular plates. In reference 2 a similar problem is solved by using
the characteristic functions for beam vibration modes. A finite-difference
method is presented in reference 3 which is based on an extended stiffness
method.



In references 4 and 5 finite-difference methods are presented in which
the necessary set of finite-difference equations is obtained directly from the
applicable energy expression. For certain problems this technique presents a
much simpler approach for obtaining the desired set of difference eguations than
does the more usual finite-difference representation of the partial differential
equation. The particular technique discussed in reference 5 is evaluated in
reference 6 for plate vibration problems. The purpose of the present paper is
to evaluate this technique for determining the thermal-stress-equilibrium state
of a plate where the forcing function consists of a temperature distribution.

SYMBOLS

a one-half of plate length (see fig. 3)
b one-half of plate width (see fig. 3)
E modulus of elasticity, function of x and Yy
Ep reference modulus of elasticity
{é} thermal-forcing~function column matrix
Gi element of {é}
h plate thickness, function of x and ¥
hy reference plate thickness
M total number of half-stations associated with type 2 areas
K total number of grid stations associated with type 1 areas
Ny x-direction midplane force per unit length
Ny y-direction midplane force per unit length
ny midplane shear force per unit length
[@] general matrix of coefficients
Qij element of [g]
R number of grid stations at which solution is unknown

2
T; = Ephy (afn) e (1=1,2, ...K)



AT temperature change from reference-temperature state, function of x
and y

U complementary strain energy

X,y Cartesian coordinates of plate

a coefficient of thermal expansion, function of x and Yy

n .

By = E —) i=1,2 ...K)
L= Ehe(g) (1 -1, 2
Ej=Erhr(ET1h-> (J=1,2 . ..M
J
€ grid spacing in x-direction
M3 M52 M e integration factors
A grid spacing in y-direction
M Poisson's ratio
[} Airy stress function
[%J column matrix of @ values to be determined
5( ) variational operator
Ve ILaplacian operator
Subscripts:
N,W,NN, EE, ...NE/2,NW/2, ... grid points, located with respect to a general
station (see fig. 2)
0] indicates evaluation of a quantity at a general grid point (see
fig. 2)

i,j,m,k integers

GENERAL METHOD OF ANALYSIS

The usual finite-difference approach is to replace the partial derivatives
in the governing partial differential equation with a suitable set of finite-
difference approximations. TFor points on or near the boundary, the derivatives
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are expressed in terms of fictitious exterior points; these fictitious points
are then eliminated by means of the boundary conditions, also expressed in
finite-difference form.

The essential difference between the usual finite-difference approach
based on the partial differential equation and the energy approach lies in the
manner of satisfying the boundary conditions to be applied to the solution sur-
face, the surface in space defined by the Airy stress function @ = f(x,y). In
the energy approach the only conditions that must be satisfied explicitly are
those involving the variation of the solution surface and the variation of cer-
tain first normal derivatives of the solution surface at the boundary. These
conditions are generally termed the "geometric," or forced, boundary conditions.
The remaining boundary conditions, generally termed the "natural" boundary con-
ditions, are formulated in terms of the second and third derivatives of the
solution surface. These conditions, which are often difficult to handle
explicitly in the usual finite-difference approach, are automatically satisfied
as accurately as possible by using the energy approach.

DERIVATION OF DIFFERENCE EQUATIONS

For a heated plate the appropriate energy expression obtained from ref-

erence 5 1is
2 )\? 2 2
I M) . (3% _gu_g_;éw(lw)(_g)
2Eh d3x2 6y2 Bx By ox Jdy

2 2
+ 2a.EhAT<a_g + 8__@) dx dy (1)
Bx2 ayE

where ¢ is the Airy stress function which has been introduced to satisfy the
equilibrium conditions and is related to the stress resultants by the following

equations:

Ny=§2_Q j
d3x2
2
)
Nx_—g ? (2)
oy
Mo oL OB
xy ox By)



The application of the calculus of variations to equation (1) leads to
the following differential equation for a rectangular plate:

VP + aERVA(AT) = O (3)

and to the following associated boundary conditions:

9f .92 | amwr-o or 5(99) =0, (Myy = 0)

Along y =y, ¥ =V,

d oo Sy

8}{2 - M 2){2 ¥ =0 o 8<_9> ) O, (ny ) O)
5@

aég + (2 + p) 3 2 : + oFh 2(AT) = 0 or 5() = o, (Ny = 0)

=0 or &(p)

Il
(@]

vhere X = X;, X =X, Yy =1yy, and y =Yyp denote the edges of the plate.

The boundary conditions given in the parentheses are the physical interpreta-
tions of the boundary conditions on ¢ and its first derivative and are seen

to be force boundary conditions. The boundary conditions involving the second
and third derivatives of ¢ are conditions of compatibility which are discussed
in detail in reference 5. These boundary conditions do not have to be consid-
ered when applying the energy method to obtain directly the finite-difference
equations.

The first step in determining the necessary difference equations is to
divide the surface of the plate into a suitable grid network as is shown in
figure 1 for a plate of arbitrary shape. The intersections of the grid network
are referred to as grid stations or grid points. The derivatives in equa-
tion (1) are expressed by means of finite-difference expressions in terms of
the value of the solution surface associated with each grid station @;. The



required set of finite-difference equations is then determined by minimizing
the complementary strain energy with respect to each ¢i°

The notation relating to the grid stations is shown in figure 2. The sta-
tion O is a central point at which the associated unknown value of the solution
surface is referred to as ¢O' The subscripts associated with the other grid

stations are the directional bearings of the stations with respect to the sta-
tion 0. Subscripts are also indicated at half-stations which do not coincide
with the grid stations, but which are useful in evaluating the mixed partial

derivative.

For integration over the plate, elements shown as type 1 area in figure 2
are used for all 82¢/%x2 and 82¢/éy2 terms. Elements designated as type 2
area are used for the O /0x dy terms. The following set of finite-difference
expresiions having the orders of error indicated was used (see chs. IT and V of
ref. T):

3% '
Hoodfpy-oes) ol

3o _ 3y - oo + 1) o(xz)} (1)

aye A2
52
——————aiNge = 'el—-)\(¢NE - Py - gt ¢o) O(GK)J

The replacement of the integration in equation (1) by a trapezoidal sum-
mation and subsequent differentiation with respect to each @; leads to the

following general eguation:

éU N 82¢k 52¢k 3 825615 . 52¢k _ 52¢k d / a25251;

ou_ _ J -
A kZie)‘(Ehl; R 2 B\2) 52 “axe 5¢i\ay2

2 2 M 2 2
a@% e ny 9P > () _
+ (athAm)k a¢i\§x2 + ay2 + gi; 2eN(1 + p)(iﬁ>m S & o \ox gy =0

(i =1, 2, 3, - . . R) (5)



where

R number of grid stations at which value of solution surface is unknown;
in general, includes fictitious grid polnts located just off
boundaries

K total number of grid stations associated with type 1 areas (fig. 2)

M total number of grid stations associated with type 2 areas (fig. 2)

k grid stations for which type 1 areas apply

m half-stations for which type 2 areas apply

The integration factors, represented by m, and 7., are unity for a general

point but may be less than unity for points in the neighborhood of a boundary,
depending on the degree that the boundary has truncated the grid element.

The required set of difference equations can now be determined by utilizing
equations (4) in equation (5). It is noted from equations (4) and (5) that the
summation process need not proceed over the entire plate; that is, the partial
derivative of the energy with respect to ¢i exists only in the neighborhood

of the general point i. For example, consider a particular point O, as shown
in figure 2; then the term

2
Nl
o \ox=

has nonzero values only when the second derivative is evaluated at 0, &,
or W. Therefore, by using equations (4), equation (5) becomes:




2
- Bo{(?‘E - oy + B)s(Pe - oo + Bu) + (&) (9 - oo+ fo)ag e - 2o + 95) - (§) (75 - 290 + Bu)- (9 - 2o + #s)

+ (- 2o + ¢s)5%5(¢]3 - oo + %ﬂ} + by K%)“(eﬂm - oy + yﬂo)a—;;(saNN - 2y + 4,

- “(§)2(¢NE - oy + ¢Nw)a%o(¢w - oy + ¢O)J * Bs (%) (fss - 285 + ¢0)a¢ (Pss - o5 + Po)

-

- (£ o - 2 + dr)o(Fs - 2B + )| + b (B = 2 + Pz B = 28y + o)

~

_

- (5 (o - 2B + o) B - B+ Bo) | + 8| (P - o + o) 575 Pz = 29+ 40)

J

V2 [ 3
- H(%) (¢NE - 28y + ¢SE>T(¢EE - g + ¢0) +2(1 + I-L)(X) [BNE/Q(¢NE - Py~ Pyt ¢O)%(¢NE - Py - ¢E + ¢o)

+ Esw/z(‘zso - Bu-fs+ ¢sw)§z—o(¢o -y -fst ¢sw) * ENW/2(¢N - - ot ¢w)a—;‘6(¢N - P - Bo ¥ ¢w)

g\? 3 +
* ESE/2(¢E - fo-Fsg * ¢s>7(¢ - Po - g * ¢s):) + To[a%)'(% - 2 + ¢w) * (3\') a—%(% - 2o ¢s)]

(5 [ 5ol - ot o) + 7 sl - o @ )] ¢ gl - e ) < T gl - e )0 (O

s

where
<
By = Erhr<-mﬂl-)i (1=1,2 ...K)
T; = Erhree(aATn)i (1=12,23 ... K)P (7
By = Exbo(h) (3=1, 2 3 )
J J
and
Ep reference modulus of elasticity
hy, reference plate thickness

The detailed differentiation with respect to @y in equation (6) has not

been carried out because the inclusion of certain boundary conditions leads to
special results when the general point O is related to its immediate neighbors
by these boundary conditions. When the value of the solution surface asso-
ciated with the general point O 1s not related to values associated with other
points through the boundary conditions, a general equation holding in the
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interior region removed from the boundaries and written about the O point is

obtained from equation (6) in terms of 13 coefficients as follows:

Ui + WPy + sPss + Whs *+ Wfer * P + UniPuw + Wi

+ Qubaw *+ Wefe * wwPsw + wefse * WPo = Go

where the coefficients are

o = (3 o
s = (55
9x = P
Gw = By
R GO ICRORE OIS

Quy = IJ-(%) "'BW +2(l+u)

el S~ N
> m
~—
[\
g
~
n

Qgg = -u( ) Bs + Bg) + 21 + u)

>‘|m

(8)

(9)

(10)

(11)

(12)

(13)

(1k)

(15)

(16)

(17)

(18)

(19)



Qsw = —u(f )2(65 + By) + 21 + u)({)gésw/g (20)

Q = uK%)u - 2u(§>2 + 1}30 + (%)l‘(BN + Bg) + By + By

+2(1 + H)(%)e(ésw/g + ESE/E + BNW/Q + BNE/E‘) (21)

and

Go = 2[1 +(-§)2]To - (%)2(TN +Tg) - Tp - Ty (22)

The inclusion of exterior grid points causes the so-called natural boundary
conditions (which involve the second and third derivatives of @) to be satis-
fied as well as is possible for the assumed grid spacing. If there is zero
normal force on a boundary, then &(§) along the boundary is zero so that ¢
may be taken equal to zero along the boundary and the minimization with respect
to ¢ does not involve the boundary grid points. For this case equations (8)
to (22) apply directly but it should be noted that the integration factor may
be zero for some of the coefficients of the off-boundary grid points even though
¢ at the off-boundary grid points is not zero. If there is zero shearing force
along the boundary, the boundary condition is equivalent to setting the normal
derivative of ¢ along the boundary equal to zero, which means that the off-
boundary grid points are determined from the interior points by symmetry rela-
tions. These relations must be used in equation (6) before the differentiation
is performed. The coefficients to be used in equation (8) for this boundary
condition have been derived from equation (6) for several locations of the grid
point with respect to the boundary and are shown in appendix A. These values
are for a uniform plate but could be extended to the general case by the use of
the same symmetry conditions in conjunction with equation (6). Also included
in appendix A are the coefficients for a general interior point.

Equation (8), when properly written to include the effects of the imposed

boundary conditions, defines a set of R algebraic equations in R unknowns
which may be written in matrix form as

WG -© (23)

The in-plane forces are then determined by solution of equation (23) for ¢j
and direct substitution of the results into equations (2) and (4).
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NUMERTCAL EVALUATION COF METHOD

The applicability and accuracy of the finite-difference method is evaluated
by applying it to determine the midplane force distribution for a thin, flat
plate with a "tent" type of temperature distribution as shown in figure 3. This
problem was chosen because an approximate solution and experimental results are
presented in reference 1 to provide a comparison of the results.

Two grid spacings are used to provide some indication of the convergence.
The grid spacing shown in figure 3 is referred to as fine grid spacing and
results in a solution surface which can be determined at grid stations 1 to 2h.
A grid spacing having intervals which are twice the size of the fine grid inter-
vals is referred to as coarse grid spacing and results in a solution surface
which can be determined at grid statiomns 1, 3, 5, 13, 15, and 17.

The actual plate occupies the region -a S xS a, -b s y s b; but, because

of plate and temperature symmetry, it is sufficient to consider only one quad-
rant. The quadrant considered is located in the region 0S$x<a, O0OSy<Shb

where the temperature distribution is represented mathematically by

AT = ATl<l - Z)
b
The plate is assumed to be free of stress along the boundaries x = a and

¥y = b and, because of symmetry, ny =0 along x =0 and y = 0. Thus, the
boundary conditions are

g=L-o (x = o)

ax
$-2L o (y = b)
oy
of
=0 (x = 0)
ég =0 (y = 0)

oy

By considering these boundary conditions, the set of equations for the
determination of ¢i may be written directly from appendix A. These equations
for the coarse and fine grid spacing are presented in appendix B, respectively.

RESULTS AND DISCUSSION

Pictorial representations of the results are shown in figures 4, 5, 6,
and 7. Figure 4 shows the solution surface defined by the Airy stress function;
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figure 5 shows the distribution of N,; figure 6 shows the distribution of Ny;

and figure 7 shows the distribution of ny. Note that the point of view chosen
in each figure is that which will best exhibit the characteristics of the
variables.

The results of the finite-difference solutions and the approximate solu-
tion of reference 1 are compared in figures 8, 9, 10, and 11. Figure 8 shows
the variation of the midplane force Ny with y/b at x/a = 0. Figure 9 shows

the variation of the midplane force Ny with x/a at y/b = 0. Figure 10
shows the variation of Ny with x/a for y/b =0 and y/b = 1. Figure 11
shows the variation of Nx with y/b at x/a = 0.67 together with experimental
data for x/a = 0.7. Comparison of the results for the coarse and fine grid
networks indicates that the finite-difference calculations are converging
rapidly as the number of grid stations is increased. It is noted that the
stresses calculated from the finite-difference solutions are generally in good
agreement with the results of the approximate solution of reference 1. However,
the trend of the two finite-difference solutions and the comparison with experi-
ment shown in figure 11 suggest that the finite-difference results are more
accurate than the approximate results of reference 1.

- CONCLUDING REMARKS

The applicability of a variational technique to obtain directly the finite-
difference equations for the Airy stress function assoclated with thermally
induced midplane forces has been evaluated. The evaluation was made by applying
the method to determine the stress distribution for a plate configuration and
temperature distribution for which an approximate solution and experimental data
are available. Good agreement with these results was found. The results of
calculations based on a rather coarse and a fine grid network indicated that
the finite-difference solutions converge rapidly as the number of grid stations
is increased.

It is concluded that the formulation of the finite-difference eguations
from the complementary strain energy, with its inherent advantage that only the
"geometric" boundary conditions need be imposed on the stress function at the
boundary, is an excellent method for the calculation of thermally induced mid-
plane forces. The resulting generic difference equation for interior rectangular
grid points of plates with variable properties is recorded for convenience. The
treatment of points near plate boundaries has been presented in convenient form
for the important case of a rectangular plate of constant thickness.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 25, 196k.
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APPENDIX A

VALUES OF COEFFICIENTS TO BE USED IN EQUATTON (8)

FOR A BOUNDARY HAVING ZERO SHEARING FORCE

The coefficients for a general interior point are given first. For subse-
guent cases only coefficients that have changed from those for the general case
are given. The boundary condition has been used to eliminate the values of ¢
for the exterior points; hence the @; at all points exterior to the plate now

have zero coefficients in equation (8).

For the general interior point:

+
g
+¢O
)
o
=
il
&
1}
1
=
P S
>'|m
AV]
+
P
>|m
no
1

O
(@]
Il
(o)}
+
(0]
TN
>’lm
N
+
[e)Y
P
>|m
S
=g

Go

]

£ @

For a point 1 grid space from the boundary:

WA W weersf )
e g (gl
+QSW +QS +QSE
*asg

13



For a point on the boundary:

4w W % 9 Y
+ + +
Uy % g
Tags

For a point 1 grid space from the corner:

For a point on the corner:

O X
QW 9% Qg

4 +
Qs Qg

Qgss

1k

XQNW XQN XQNE Qo=7+8<§
Yoaw %0 far Team o - 2[% + <
Toow "% "o

*ags

1
QEE = 3
o\
Qg = -2|1 + (X)
I
1
Qs = §(§)



For a point l—é— grid spaces from the boundary:

"ow ey Tong

Taw tew %  Tag  tagg

L 2
+ + + Qy = - 5) - 2(£
o oy o n=(5) - 2R)
+ 0 + +
Q Q =3 - 4fE
% E EE Q= -3 1*(7\>
+ + +
9w Q%  9sE
+
Sss
For a point % grid space from the corner:
- > o)

il
1
\WN

NN
>im
N’

1

N
—

Im
~—

n

fog  Tegg %

+st %=2[1+(§)2+(§)ﬂ




For a point % grid space from the boundary:

g = Oy = b - 2§

‘aw Taw %0 Ty tam
2 L
Yy *%  *agp %= M5 - 3(3)
OB
e Feg- (-

For a point 1 grid space from one boundary and % grid space from another
boundary:

Q = Qy = -+ - 2(%)2

JQW 0o o +QEE
€ 2 € b
Yagy *ag T % * -4<X) ) 3<X>
" 0= T A5) (5]

‘ Go [2 + (%)2:]1‘0 - (%)2(21?5 - Ty) - Tg - 2Ty

For a point on one boundary and 1 grid space from another boundary:

Case 1:
NN Qg = %
T T g Qg = Qu = -2[1 + (%)2]
Jw % S | Ser
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e on = % = o5 + (5]
Yo Togg 1fe eV
e %=3+3) +(3)
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APPENDIX B
FINITE-DIFFERENCE EQUATIONS FOR STRESS FUNCTION

Finite-difference equations for determining ¢i can be written for the
rectangular plate shown in figure 3.

The equation for the coarse grid system is

r5 -k .5 -k 2 0| (¢1\ (25)
-4 10.5 -k 2 -8 2| |85 .5
5 -l 10.5 0 2 -8 ¢5 > ) aErhrATlae .5
-k 2 0 1.0 -8 1 § P13 9 Yo
2 -8 2 -8 23 -8| |fs 0
0 2 -8 1 -8 23| |$17 0
— o “
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The equation for the fine grid system is

(o2

rﬁ--u.sooo-ueoooo.5oooooooooo~—&ilﬁ
105-4.5 0 0 2 -8 2 000010000 0 000 0 0f|f
10-4 .5 © 0 2-8 2 00001000 0 000 0 0]|fs
10 <k .5 0 02-8 2000012100 0 00 O0 0 Of|f

10 -4 0 002-8 2000010 0 0000 0Of|f

105 0 0 0 0 2-8 00 0CO01 0 000 0 0f|f

10_.;-81000-420000 .5 0 0 0 0 O ¢7

22-8 1 00 2-8 2000 0 10 0 0 O||gg

22-8 1 0 0 2-8 2 0 0 0 0 1 0 0 0| |fg

21-8 1 0 0 2-8 2 0 0 0 0 1 0 0| |f,

21-8 0 0 0 2-8 2 0 0 0 0 1 Of|f,

22 0 0 00 2-8 0 0 0 0 0 1f 85 aErhrATlae
10-8 1 0 0 0 -5 2 0 0 0 0l |f3 36

21-8 1 00 2 -8 2 0 0 0| |f

Symmetric 20-8 10 0 2-8 2 00 ¢15

20-8 1 0 0 2-8 2 0| |fg

20-8 0 0 0 2-8 2 ¢17

22 0 0 0 0 2-8||fg

10.5-8 1 0 0 2 ¢19

#20

P

Poo

¢23

B,




20

REFERENCES

Heldenfels, Richard R., and Roberts, William M.: Experimental and
Theoretical Determination of Thermal Stresses in a Flat Plate. NACA

TN 2769, 1952.

Przemieniecki, J. S.: Thermal Stresses in Rectangular Plates. Aero.
Quarterly, vol. X, pt. I, Feb. 1959, pp. 65-78.

Gallagher, Richard H., and Huff, Rolland D.: Thermoelastic Effects on
Hypersonic Stability and Control. Part II - Volume I. Elastic Response
Determinations for Severely Heated Wings. ASD-TR-61-287, Pt. II, Vol. T,
U.S. Air Force, Aug. 1962.

Stein, Manuel, and Sanders, J. Lyell, Jr.: A Method for Deflection Analysis
of Thin Low-Aspect-Ratio Wings. NACA TN 3640, 1956.

Houbolt, John C.: A Study of Several Aerothermoelastic Problems of Aircraft
Structures in High-Speed Flight. Nr. 5, Mitteilungen aus dem Institut fur
Flugzeugstatik und Leichtbau. Leemann (Zirich), c¢.1958.

Walton, William C., Jr.: Applications of a General Finite-Difference Method
for Calculating Bending Deformations of Solid Plates. NASA TN D-536, 1960.

Salvadori, Mario G., and Baron, Melvin L.: Numerical Methods in Engineering.
Prentice-Hall, Inc., 1961.



Figure l.- General planform of plate showing possible grid network.
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Figure 2.- General point 0, its neighbors, and illustrations of type 1 and type 2 integration areas.
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a

Figure 3.- Grid spacing and temperature distribution used in evaluating

(b) Temperature distribution.
4T = AT1(1 - y/b);
0s Yy < b; 08 x < a.

the finite-difference technique.
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Figure L.~ Solution surface defined by Alry stress function for rectengular plate with AT = AT1(1 - y/b). Symmetric sbout
xfa =0 and y/b=0. afb =3/2; p=1/3; ¢ =2 =a/6.
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Figure 5.- Distribution of midplane force intensity Ny due tq temperature distribution AT = ATy(1 - y/b). Symmetric
about x/a =0 add y/b = 0.
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Figure 6.~ Distribution of midplane force intensity Ny due to temperature distribution AT = APy(1 - y/b). Symmetric
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Figure T.- Distribution of midplane shear force intensity ny due to temperature distribution AT = ATl(l - y/b). Anti-
symmetric about x/e =0 and y/b = 0.



Finite—difference approximation
—_— Fine grid
- - Coarse grid
— — — — —Method of TN 2769
0.2 -
Nx
0 /
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—0.4 _ §
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y/b

Figure 8.~ Comparison of variation of midplane force intensity Ny with y/b at x/a = O for

temperature distribution AT = AT{(1 - y/b). Symmetric about y/b = O.



Finite—difference approximation
—Fine grid

- — -—Coarse grid
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Figure 9.- Comparison of variation of midplane force intensity Ny with x/a at y/b =0 for

temperature distribution AT = AT1(1 - y/b). Symmetric about x/a = 0.
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Figure 10.- Comparison of variation of midplane force intensity

Ny with x/a at y/b =0 and
y/b = 1 for temperature distribution AT = AT1(1 - y/b).

Symmetric about x/a = O.
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